{ "metadata": { "name": "binary_outcomes" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd\n", "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "%load_ext rmagic" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "%%R\n", "download.file(\"https://dl.dropbox.com/u/7710864/data/ravensData.rda\",destfile=\"../data/ravensData.rda\",method=\"curl\")\n", "load(\"../data/ravensData.rda\")\n", "write.csv(ravensData, \"../data/ravensData.csv\", row.names=FALSE)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "ravensData = pd.read_csv('../data/ravensData.csv')\n", "ravensData.head(6)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ravenWinNumravenWinravenScoreopponentScore
0 1 W 24 9
1 1 W 38 35
2 1 W 28 13
3 1 W 34 31
4 1 W 44 13
5 0 L 23 24
\n", "
" ], "output_type": "pyout", "prompt_number": 16, "text": [ " ravenWinNum ravenWin ravenScore opponentScore\n", "0 1 W 24 9\n", "1 1 W 38 35\n", "2 1 W 28 13\n", "3 1 W 34 31\n", "4 1 W 44 13\n", "5 0 L 23 24" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "from statsmodels.formula.api import ols\n", "\n", "lmRavens = ols('ravenWinNum ~ ravenScore', ravensData).fit()\n", "lmRavens.summary()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
OLS Regression Results
Dep. Variable: ravenWinNum R-squared: 0.146
Model: OLS Adj. R-squared: 0.099
Method: Least Squares F-statistic: 3.080
Date: Wed, 20 Feb 2013 Prob (F-statistic): 0.0963
Time: 19:46:45 Log-Likelihood: -11.193
No. Observations: 20 AIC: 26.39
Df Residuals: 18 BIC: 28.38
Df Model: 1
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.2850 0.257 1.111 0.281 -0.254 0.824
ravenScore 0.0159 0.009 1.755 0.096 -0.003 0.035
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Omnibus: 4.880 Durbin-Watson: 1.571
Prob(Omnibus): 0.087 Jarque-Bera (JB): 2.190
Skew: -0.505 Prob(JB): 0.335
Kurtosis: 1.732 Cond. No. 72.9
" ], "output_type": "pyout", "prompt_number": 18, "text": [ "\n", "\"\"\"\n", " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: ravenWinNum R-squared: 0.146\n", "Model: OLS Adj. R-squared: 0.099\n", "Method: Least Squares F-statistic: 3.080\n", "Date: Wed, 20 Feb 2013 Prob (F-statistic): 0.0963\n", "Time: 19:46:45 Log-Likelihood: -11.193\n", "No. Observations: 20 AIC: 26.39\n", "Df Residuals: 18 BIC: 28.38\n", "Df Model: 1 \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "Intercept 0.2850 0.257 1.111 0.281 -0.254 0.824\n", "ravenScore 0.0159 0.009 1.755 0.096 -0.003 0.035\n", "==============================================================================\n", "Omnibus: 4.880 Durbin-Watson: 1.571\n", "Prob(Omnibus): 0.087 Jarque-Bera (JB): 2.190\n", "Skew: -0.505 Prob(JB): 0.335\n", "Kurtosis: 1.732 Cond. No. 72.9\n", "==============================================================================\n", "\"\"\"" ] } ], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "plot(ravensData['ravenScore'], lmRavens.fittedvalues, 'ob')\n", "xlabel('Raven Score')\n", "ylabel('Prob Win');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVHX+P/Dn6ExARlqCpAyKAvL7xyBgZuaYIZXJ5o8U\n9+gm/khNBPtx1oqvx6FN063dlh+6micrywi33HBDUTRHKhPaNHHTkljJkU2PmIohIDO+v3/4aXJk\nCAbvMD/u83HOnDP3PW8vrzen5sm973vvWyGEECAiItnq4egCiIjIsRgEREQyxyAgIpI5BgERkcwx\nCIiIZI5BQEQkc3YJgtmzZ8PPzw/R0dFWP9+8eTNiY2MRExODkSNHoqqqyh5lEBFRJ9glCNLT01Fa\nWtru50OGDEF5eTmqqqqwbNkyPPHEE/Yog4iIOsEuQTBq1Cjccccd7X4+YsQI9O7dGwAwfPhwnDp1\nyh5lEBFRJygdXcAbb7yBhx9+uE27QqFwQDVERK7P1gdGOHSyeO/evdi4cSNWr15t9XMhhNu+li9f\n7vAaOD6OjeNzv1dXOOyIoKqqCvPmzUNpaelvnkYiIiL7csgRwcmTJzFp0iS8++67CA4OdkQJRET0\nf+xyRDB9+nTs27cP9fX1CAgIQE5ODlpbWwEA8+fPx4svvojz589j4cKFAACVSoXKykp7lOK0tFqt\no0uwK3cenzuPDeD45EghunpSyc4UCkWXz3cREclVV747eWcxEZHMMQiIiGTO4fcREBG5o5KScuTl\n7UJLixIeHkZkZo7D+PH3ObosqxgEREQSKykpR1bWTtTUrDC31dRkA4BThgFPDRERSSwvb5dFCABA\nTc0K5OeXOaii38YgICKSWEuL9ZMtzc09u7mSzmEQEBFJzMPDaLXd09PUzZV0DoOAiEhimZnjEBSU\nbdEWFPQCFi9OdlBFv403lBER2UFJSTny88vQ3NwTnp4mLF6c3C0TxV357mQQEBG5Ed5ZTERENmMQ\nEBHJHIOAiEjmGARERDLHICAikjkGARGRzDEIiIhkjkFARCRzDAIiIpmzSxDMnj0bfn5+iI6Otvr5\nt99+ixEjRsDT0xN/+ctf7FECERF1kl2CID09HaWlpe1+3rdvX+Tn5+PZZ5+1x48nIiIb2CUIRo0a\nhTvuuKPdz319fZGQkACVSmWPH09ERDZw6qUqdTqd+b1Wq4VWq3VYLUREzkiv10Ov19/UPlwmCIiI\nqK0b/0jOycmxeR+8aoiISOYcGgRcb4CIyPHssjDN9OnTsW/fPtTX18PPzw85OTlobW0FAMyfPx+n\nT59GYmIiGhoa0KNHD3h7e+Po0aO47bbbfi2MC9MQEdmMK5QREckcVygjIiKbMQiIiGSOQUBEJHMM\nAiIimWMQEBHJHIOAiEjmGARERDLHICAikjkGARGRzDEIiIhkjkFARCRzDAIiIpljEBARyRyDgIhI\n5hgEREQyxyAgIpI5BgERkcwxCIiIZI5BQEQkc5IHwezZs+Hn54fo6Oh2+2RmZiIkJASxsbE4dOiQ\n1CUQEZENJA+C9PR0lJaWtvv59u3b8f3336O6uhqvv/46Fi5cKHUJRERkA6XUOxw1ahRqa2vb/Xzb\ntm14/PHHAQDDhw/HhQsXcObMGfj5+bXpq9PpzO+1Wi20Wq3E1RIRuTa9Xg+9Xn9T+5A8CDpSV1eH\ngIAA87ZarcapU6c6DAIiImrrxj+Sc3JybN5HtwcBAAghLLYVCoUjyiCiblBSUo68vF1oaVHCw8OI\nzMxxGD/+PkeXRdfp9iDw9/eHwWAwb586dQr+/v7dXQYRdYOSknJkZe1ETc0Kc1tNTTYAMAycSLdf\nPpqamopNmzYBAA4cOIA+ffpYPS1ERK4vL2+XRQgAQE3NCuTnlzmoIrJG8iOC6dOnY9++faivr0dA\nQABycnLQ2toKAJg/fz4efvhhbN++HcHBwejVqxfefPNNqUsgIifR0mL9K6a5uWc3V0K/RfIgKCws\n7LBPQUGB1D+WiJyQh4fRarunp6mbK6HfwjuLichuMjPHISgo26ItKOgFLF6c7KCKyBqFuPESHieh\nUCjaXF1ERK6npKQc+fllaG7uCU9PExYvTuZEsR115buTQUBE5Ea68t3JU0NERDLHICAikjkGARGR\nzDEIiIhkjkFARCRzDAIiIpljEBARyRyDgIhI5hgEREQyxyAgIpI5BgERkcwxCIiIZI5BQEQkcwwC\nIiKZYxAQEcmcXYKgtLQUYWFhCAkJwerVq9t8fv78eUycOBGxsbEYPnw4vvnmG3uUQUREnSB5EJhM\nJmRkZKC0tBRHjx5FYWEhjh07ZtFn5cqViI+Px+HDh7Fp0yZkZWVJXQYREXWS5EFQWVmJ4OBgBAYG\nQqVSIS0tDcXFxRZ9jh07hjFjxgAAQkNDUVtbi7Nnz0pdChERdYJS6h3W1dUhICDAvK1Wq1FRUWHR\nJzY2Flu3bsW9996LyspK/PDDDzh16hR8fX0t+ul0OvN7rVYLrVYrdblEbq2kpBx5ebvQ0qKEh4cR\nmZnjuF6wm9Hr9dDr9Te1D8mDQKFQdNjnueeeQ1ZWFjQaDaKjo6HRaNCzZ882/a4PAiKyTUlJObKy\ndqKmZoW5raYmGwAYBm7kxj+Sc3JybN6H5EHg7+8Pg8Fg3jYYDFCr1RZ9vL29sXHjRvP24MGDMWTI\nEKlLIZK1vLxdFiEAADU1K5Cfv4xBQBYknyNISEhAdXU1amtrceXKFRQVFSE1NdWiz8WLF3HlyhUA\nwIYNGzB69GjcdtttUpdCJGstLdb/zmtubnv0TfIm+RGBUqlEQUEBUlJSYDKZMGfOHISHh2P9+vUA\ngPnz5+Po0aOYNWsWFAoFoqKi8MYbb0hdBpHseXgYrbZ7epq6uRJydgohhHB0EdYoFAo4aWlELsHa\nHEFQ0AvIzX2Qp4bcWFe+OxkERG6spKQc+fllaG7uCU9PExYvTmYIuDkGARGRzHXlu7NTcwQmkwln\nzpyB0fjrOceBAwfaVh0RETmlDoMgPz8fOTk56Nevn8W1/keOHLFrYURE1D06PDUUFBSEyspK9O3b\nt7tqAsBTQ0REXdGV784O7yMYOHAgbr/99i4XRUREzq3DU0ODBw/GmDFjMH78eNxyyy0AriXO008/\nbffiiIjI/joMgoEDB2LgwIG4cuUKrly5AiFEp54nREREroGXjxIRuRFJLx/NyspCbm4uJkyYYPUH\nbdu2zfYKiYjI6bQbBH/4wx8AAM8880ybz3hqiIjIfbQbBJs2bUJNTQ1GjhwJf3//7qyJiIi6Ubtz\nBPn5+fjiiy+wf/9+CCFwzz33YOTIkRg5ciRiY2PRo4dd1r3/tTDOEZCMcCUxkordnjVUV1dnDoXi\n4mKcPXsWDQ0NXS60U4UxCEgmrD8lNBu5uSkMA7KZ5DeUCSFw+PBhbNu2DcXFxdi3bx+Cg4OtzhsQ\nUde0v5JYmYMqIrlpd44gOTkZDQ0NiIuLw/Dhw/HCCy8gLCyME8VEEuNKYuRo7QbBkCFDcPjwYVRX\nV+POO++Er68vfH194ePj0531EbkVa3MBXEmMHK3DOYKLFy/iwIED+OKLL/DFF1+gvr4ekZGR2LRp\nk30L4xwBuZn25gJmzPDHu+/WcSUxkoRd1iPw9PTErbfeCi8vL3h4eMBgMKClpaXLRRLJVXtzAQcO\nLENubgry85ddt5IYQ4C6T7tB8NRTT2H//v04fvw4NBoN7rnnHixcuBCbNm1Cnz59fnOnpaWlWLJk\nCUwmE+bOnYulS5dafF5fX48ZM2bg9OnTMBqNePbZZzFr1ixJBkTkrH5rLmD8+Pv4xU8O024QBAYG\nYsaMGYiNjYVS2amFzABcW80sIyMDu3fvhr+/PxITE5Gamorw8HBzn4KCAmg0Grz88suor69HaGgo\nZsyYYdPPIXI1nAsgZ9Xu5aNZWVkYNmyYzV/OlZWVCA4ORmBgIFQqFdLS0lBcXGzRp3///ub7EBoa\nGtC3b1+GALm9zMxxCArKtmgLCnoBixcnO6giomsk//atq6tDQECAeVutVqOiosKiz7x583D//fdj\nwIABuHTpErZs2WJ1Xzqdzvxeq9VCq9VKXS5Rt/nl1A/nAkhKer0eer3+pvYheRB05j6DlStXIi4u\nDnq9HjU1NUhOTsbhw4fh7e1t0e/6ICByB5wLIKnd+EdyTk6OzfvoVBB89dVX+Oyzz9CjRw+MHDkS\n8fHx7fb19/eHwWAwbxsMBqjVaos++/fvR3b2tUPkoKAgDB48GN999x0SEhJsHgAREd2cDp8c9+KL\nL2LWrFn46aefcPbsWaSnp+NPf/pTu/0TEhJQXV2N2tpaXLlyBUVFRUhNTbXoExYWht27dwMAzpw5\ng++++w5Dhgy5yaEQOYZOtxY+PtPQp88s+PhMg0631tElEdlGdCAkJEQ0NTWZty9fvixCQkJ+899s\n375dDB06VAQFBYmVK1cKIYRYt26dWLdunRBCiLNnz4pHHnlExMTEiKioKLF58+Y2++hEaUQOt3z5\nGqFUzheAML+Uyvli+fI1ji6NZKor350d3lk8ZswYbN26FXfccQcA4Pz585g8eTI++eQTuwYU7ywm\nV+DjMw3nzhVZaU/D2bPvO6AikjtJ7yxevHgxAKB3796IjIzEuHHjAABlZWVISkq6iTKJ3IfR6GW1\nvbXVs5srIeq6doNg2LBhUCgUSEhIwKOPPmq+Gkir1fIJpET/R6lsstquUjV3cyVEXdduEFz/yIeW\nlhYcP34cwLWJXpVKZffCiFxBRsZorFixAEbjOnObUjkfixbxElFyHR3OEej1ejz++OMYNGgQAODk\nyZN4++23MXr0aPsWxjkCchE63VqsWVOO1lZPqFTNWLToPuh0Tzq6LJIpuyxVGR8fj8LCQoSGhgIA\njh8/jrS0NBw8eLDrlXamMAYBEZHNJF+qEgCMRqM5BABg6NChMBqtPzyLiIhcT4d3Fg8bNgxz587F\njBkzIITA5s2beQcwEZEb6fDUUEtLCwoKCvD5558DAEaNGoUnn3wSHh4e9i2Mp4aIiGwm+RyB0WhE\nVFQUvv3225suzlYMAiIi20k+R6BUKhEaGooffvjhpgojIiLn1eEcwU8//YTIyEgkJSWhV69eAK4l\nzrZt2+xeHBER2V+HQfDSSy8BgMWhBu8sJneh061FQcE+GI1eUCqbkJExmvcAkOy0O0fQ1NSEdevW\n4fvvv0dMTAxmz57drXcUc46A7E2nW4sVK6puuCt4AbKzYxgG5LIknSyeOnUqbrnlFowaNQrbt29H\nYGAgcnNzJSm0U4UxCMjO+ORQckeSPn302LFjOHLkCABgzpw5SExMvLnqiJwMnxxKdE27Vw0plUqr\n74ncBZ8cSnRNu0FQVVUFb29v8+vIkSPm97fffnt31khkFxkZo6FULrBo45NDSY46vLPYUThHQN2B\nTw4ld2OXp486CoOAiMh2dnn6aFeUlpYiLCwMISEhWL16dZvPX331VWg0Gmg0GkRHR0OpVOLChQv2\nKIWIiDog+RGByWRCaGgodu/eDX9/fyQmJqKwsBDh4eFW+3/88cf429/+ht27d1sWxiMCIiKbOcUR\nQWVlJYKDgxEYGAiVSoW0tDQUFxe32/+9997D9OnTpS6DiIg6SfLrQuvq6hAQEGDeVqvVqKiosNr3\n8uXL2LlzJ9auXWv1c51OZ36v1Wqh1WqlLJWIyOXp9Xro9fqb2ofkQWDLc4j+9a9/4d5770WfPn2s\nfn59EBARUVs3/pGck5Nj8z4kDwJ/f38YDAbztsFggFqtttr3/fff52kh6rKSknLk5e1CS4sSHh5G\nZGaOw/jxvAeAyFaSB0FCQgKqq6tRW1uLAQMGoKioCIWFhW36Xbx4EeXl5XjvvfekLoFkoKSkHFlZ\nO1FTs8LcVlOTDQAMAyIbST5ZrFQqUVBQgJSUFERERGDatGkIDw/H+vXrsX79enO/jz76CCkpKfDy\nsv68F6Lfkpe3yyIEAKCmZgXy88scVBGR6+INZeSStFod9u3TtWkfPVoHvb5tO5FcSPr0USJncuN8\nQEPDeav9PD1N3VwZketjEJDTszYfcNddc3DXXU/j9Om/mtuCgl7A4sUPOqJEIpfGU0Pk9FJS/h92\n7XqpTXt8/Dz4+t6F5uae8PQ0YfHiZE4Uk+zx1BC5pZYW6/+Zenv7o7RU173FELkhuzx0jkhKHh5G\nq+2cDyCSBoOAnIpOtxY+PtPQp88s+PhMg063FpmZ4xAUlG3R79p8QLKDqiRyL5wjIKeh063FihVV\nMBrXmduUygXIzo5BYmIU8vPLOB9A1AEuTEMuzcdnGs6dK7LSnoazZ993QEVErscpHkNN1FVGo/W7\nzFtbPbu5EiJ5YRCQ01Aqm6y2q1TN3VwJkbwwCMhpZGSMhlK5wKJNqZyPRYs4F0BkT5wjIKei063F\nmjXlaG31hErVjEWL7oNO96SjyyJyGZwsJiKSOU4WExGRzRgEREQyxyAgIpI5BgERkcwxCIiIZI6P\noSZJ3biSWGbmOD4TiMjJ2SUISktLsWTJEphMJsydOxdLly5t00ev1+Opp55Ca2srfHx8oNfr7VEK\ndSNrK4nV1Fx7aijDgMh5SX4fgclkQmhoKHbv3g1/f38kJiaisLAQ4eHh5j4XLlzAyJEjsXPnTqjV\natTX18PHx8eyMN5H4HLaW0ksJWUZSkv/5ICKiOTHKe4jqKysRHBwMAIDA6FSqZCWlobi4mKLPu+9\n9x4mT54MtVoNAG1CgFxTeyuJNTf37OZKiMgWkp8aqqurQ0BAgHlbrVajoqLCok91dTVaW1sxZswY\nXLp0CVlZWZg5c2abfel0OvN7rVYLrVYrdbkkIa4kRtT99Hr9TZ9alzwIFApFh31aW1tx8OBB7Nmz\nB5cvX8aIESNw9913IyQkxKLf9UFAzi8zcxxqarIt5giurST2oAOrInJvN/6RnJOTY/M+JA8Cf39/\nGAwG87bBYDCfAvpFQEAAfHx84OXlBS8vL9x33304fPhwmyAg1/LLhHB+/rLrVhJ7kBPFRE5O8sli\no9GI0NBQ7NmzBwMGDEBSUlKbyeJvv/0WGRkZ2LlzJ1paWjB8+HAUFRUhIiLi18I4WUxEZLOufHdK\nfkSgVCpRUFCAlJQUmEwmzJkzB+Hh4Vi/fj0AYP78+QgLC8ODDz6ImJgY9OjRA/PmzbMIASIi6j58\nDDURkRtxistHiYjItTAIiIhkjkFARCRzDAIy0+nWwsdnGvr0mQUfn2nQ6dY6uiQi6gacLCYA10Jg\nxYoqGI3rzG1K5QJkZ8dw8XgiF8LF66nLfHym4dy5IivtaTh79n0HVEREXcGrhqjLjEYvq+2trZ7d\nXAkRdTcGAQEAlMomq+0qVXM3V0JE3Y0rlMmQtVXEMjJGY8WKBTfMEczHokV8ThCRu+McgcxYW0Us\nKCgbubkp+PLL/2DNmnK0tnpCpWrGokX3caKYyMVwspg6xFXEiNwbJ4upQ1xFjIhuxCCQGa4iRkQ3\nYhDITGbmOAQFZVu0XVtFLNlBFRGRo3GOQIZKSsqRn1923SpiyVxFjMhNcLKYiEjmOFlMREQ2YxAQ\nEckcg4CISObsEgSlpaUICwtDSEgIVq9e3eZzvV6P3r17Q6PRQKPR4KWX2t7gRERE3UPyZw2ZTCZk\nZGRg9+7d8Pf3R2JiIlJTUxEeHm7Rb/To0di2bZvUP56IiGwk+RFBZWUlgoODERgYCJVKhbS0NBQX\nF7fpxyuCuoariBGR1CQ/Iqirq0NAQIB5W61Wo6KiwqKPQqHA/v37ERsbC39/f7z66quIiIhosy+d\nTmd+r9VqodVqpS7Xpfy6itivC8isWLEAwFo+HI5IpvR6PfR6/U3tQ/L7CD788EOUlpZiw4YNAIB3\n330XFRUVyM/PN/e5dOkSevbsiVtvvRU7duxAVlYWjh8/blkY7yNog6uIEVFHnOI+An9/fxgMBvO2\nwWCAWq226OPt7Y1bb70VAPDQQw+htbUVP/30k9SluB2uIkZE9iB5ECQkJKC6uhq1tbW4cuUKioqK\nkJqaatHnzJkz5sSqrKyEEAJ33nmn1KW4Ha4iRkT2IHkQKJVKFBQUICUlBREREZg2bRrCw8Oxfv16\nrF+/HgDwwQcfIDo6GnFxcViyZAnef5+nNTojI2M0lMoFFm1cRYyIbhafNeRidLq1XEWMiNrFh84R\nEcmcU0wWExGRa2EQEBHJHIOAiEjmGARERDLHICAikjkGARGRzDEIiIhkjkFARCRzDAIiIpljEBAR\nyZzkC9PQNSUl5cjL24WWFiU8PIzIzByH8eP5cDgicj4MAjsoKSlHVtZO1NSsMLfV1GQDAMOAiJwO\nTw3ZQV7eLosQAICamhXIzy9zUEVERO1jENhBS4v1A63m5p7dXAkRUccYBHbg4WG02u7paermSoiI\nOsYgsIPMzHEICsq2aAsKegGLFyc7qCIiovZxYRo7KSkpR35+GZqbe8LT04TFi5M5UUxEdscVylyI\nXq+HVqt1dBl2487jc+exARyfq3OaFcpKS0sRFhaGkJAQrF69ut1+X375JZRKJbZu3WqPMpyaXq93\ndAl25c7jc+exARyfHEkeBCaTCRkZGSgtLcXRo0dRWFiIY8eOWe23dOlSPPjgg279lz8RkbOTPAgq\nKysRHByMwMBAqFQqpKWlobi4uE2//Px8TJkyBb6+vlKXQEREthAS+8c//iHmzp1r3n7nnXdERkaG\nRZ9Tp04JrVYrrl69KmbNmiU+/PDDNvsBwBdffPHFVxdetpL8ERMKhaLDPkuWLMGqVavMkxrCyqkh\na21ERCQ9yYPA398fBoPBvG0wGKBWqy36fPXVV0hLSwMA1NfXY8eOHVCpVEhNTZW6HCIi6oDkl48a\njUaEhoZiz549GDBgAJKSklBYWIjw8HCr/dPT0zFhwgRMmjRJyjKIiKiTJD8iUCqVKCgoQEpKCkwm\nE+bMmYPw8HCsX78eADB//nypfyQREd0Mm2cVusGOHTtEaGioCA4OFqtWrXJ0OTctPT1d9OvXT0RF\nRZnbzp07Jx544AEREhIikpOTxfnz5x1YYdedPHlSaLVaERERISIjI0Vubq4Qwn3G19TUJJKSkkRs\nbKwIDw8Xzz33nBDCfcb3C6PRKOLi4sQjjzwihHCv8Q0aNEhER0eLuLg4kZiYKIRwr/GdP39eTJ48\nWYSFhYnw8HBx4MABm8fndM8a6ux9CK4kPT0dpaWlFm2rVq1CcnIyjh8/jrFjx2LVqlUOqu7mqFQq\nvPbaa/jmm29w4MABrFmzBseOHXOb8Xl6emLv3r34+uuvUVVVhb179+Kzzz5zm/H9Ijc3FxEREeaL\nPdxpfAqFAnq9HocOHUJlZSUA9xpfVlYWHn74YRw7dgxVVVUICwuzfXzdFFqdtn//fpGSkmLefvnl\nl8XLL7/swIqkceLECYsjgtDQUHH69GkhhBA//vijCA0NdVRpkvrd734nysrK3HJ8jY2NIiEhQfzn\nP/9xq/EZDAYxduxY8cknn5iPCNxpfIGBgaK+vt6izV3Gd+HCBTF48OA27baOz+mOCOrq6hAQEGDe\nVqvVqKurc2BF9nHmzBn4+fkBAPz8/HDmzBkHV3TzamtrcejQIQwfPtytxnf16lXExcXBz88PY8aM\nQWRkpFuN76mnnsIrr7yCHj1+/Tpwp/EpFAo88MADSEhIwIYNGwC4z/hOnDgBX19fpKenIz4+HvPm\nzUNjY6PN43O6IOjMfQjuRqFQuPy4f/75Z0yePBm5ubnw9va2+MzVx9ejRw98/fXXOHXqFMrLy7F3\n716Lz115fB9//DH69esHjUbT7r07rjw+APj8889x6NAh7NixA2vWrMGnn35q8bkrj89oNOLgwYN4\n8skncfDgQfTq1avNaaDOjM/pgqAz9yG4Az8/P5w+fRoA8OOPP6Jfv34OrqjrWltbMXnyZMycOROP\nPvooAPca3y969+6N8ePH46uvvnKb8e3fvx/btm3D4MGDMX36dHzyySeYOXOm24wPAPr37w8A8PX1\nxcSJE1FZWek241Or1VCr1UhMTAQATJkyBQcPHsRdd91l0/icLggSEhJQXV2N2tpaXLlyBUVFRW55\no1lqairefvttAMDbb79t/gJ1NUIIzJkzBxEREViyZIm53V3GV19fjwsXLgAAmpqaUFZWBo1G4zbj\nW7lyJQwGA06cOIH3338f999/P9555x23Gd/ly5dx6dIlAEBjYyN27dqF6OhotxnfXXfdhYCAABw/\nfhwAsHv3bkRGRmLChAm2jc8O8xc3bfv27WLo0KEiKChIrFy50tHl3LS0tDTRv39/oVKphFqtFhs3\nbhTnzp0TY8eOdfnL1z799FOhUChEbGysiIuLE3FxcWLHjh1uM76qqiqh0WhEbGysiI6OFn/+85+F\nEMJtxnc9vV4vJkyYIIRwn/H997//FbGxsSI2NlZERkaav0/cZXxCCPH111+LhIQEERMTIyZOnCgu\nXLhg8/icdmEaIiLqHk53aoiIiLoXg4CISOYYBEREMscgICKSOQYBubSePXtCo9EgJiYGkyZNws8/\n/+yQOj7++GPEx8cjLi4OkZGReP311x1SB1FX8Kohcmne3t7m68RnzZqF6OhoPPPMM91aQ2trKwID\nA/Hll19iwIABaG1txYkTJzB06NAu7/OX/y1d9Y5Xci08IiC3MWLECNTU1AAAKisrcc899yA+Ph4j\nR44033AzYsQIHD161PxvtFotDh48iMbGRsyePRvDhw9HfHw8tm3bBgB46623MGnSJDz00EMYOnQo\nli5d2ubnXrp0CUajEXfeeSeAa09k/SUEzpw5g4kTJyIuLg5xcXE4cOAAAOCvf/0roqOjER0djdzc\nXADXntUUGhqKxx9/HNHR0TAYDHjllVeQlJSE2NhY6HQ6+/ziiOx/uwOR/dx2221CiGvP0580aZJY\ns2aNEEKIhoYGYTQahRBClJWVicmTJwshhHjttdfE8uXLhRBC/O9//zM/lfH5558X7777rhDi2vPd\nhw4dKhobG8Wbb74phgwZIhoaGkRzc7MYNGiQOHXqVJs65s6dK/r16yemT58uNm/eLK5evSqEEGLq\n1KnmNRpOQ/ZLAAAC+ElEQVSuXr0qLl68KP7973+L6OhocfnyZfHzzz+LyMhIcejQIXHixAnRo0cP\nUVFRIYQQYufOneKJJ54QQghhMpnEI488IsrLyyX/HRLxiIBcWlNTEzQaDfr37w+DwYAFCxYAAC5c\nuIApU6YgOjoaTz/9NL755hsAwGOPPYYPPvgAALBlyxY89thjAIBdu3Zh1apV0Gg0GDNmDFpaWnDy\n5EkoFAqMHTsW3t7e8PDwQEREBGpra9vUsWHDBuzZswdJSUl49dVXMXv2bADA3r17sXDhQgDXTvPc\nfvvt+OyzzzBp0iR4eXmhV69emDRpEj799FMoFAoMGjQISUlJ5pp27doFjUaDYcOG4bvvvsP3339v\n198nyZPkS1USdScvLy8cOnQITU1NSElJQXFxMSZOnIhly5Zh7Nix+Oc//4kffvgBWq0WwLWHGvbt\n2xdHjhzBli1bzEuoAsDWrVsREhJisf+Kigp4eHiYt3v27AmTyWS1lqioKERFRWHmzJkYPHgw3nzz\nTQBo81RPhUJh0SaEMM8F9OrVy6Lv888/jyeeeMLG3wqRbXhEQG7By8sLeXl5yM7OhhACDQ0NGDBg\nAACYv5B/MW3aNKxevRoNDQ2IiooCAKSkpCAvL8/c59ChQwDafolba2tsbIRer7f4t4GBgQCAsWPH\n4u9//zuAa6vvNTQ0YNSoUfjoo4/Q1NSExsZGfPTRRxg1alSb/aakpGDjxo1obGwEcG2tjrNnz9r6\nqyHqEIOAXNr1V9XExcUhODgYW7ZswR//+Ec8//zziI+Ph8lksug3ZcoUFBUVYerUqea2ZcuWobW1\nFTExMYiKisLy5cvN+7/xyp0bt4UQeOWVVxAWFgaNRoOcnBy89dZbAK4tAbl3717ExMQgISEBx44d\ng0ajwaxZs5CUlIS7774b8+bNQ2xsbJt9Jycn4/e//z1GjBiBmJgYTJ061WGXx5J74+WjREQyxyMC\nIiKZYxAQEckcg4CISOYYBEREMscgICKSOQYBEZHM/X/VDkDoYUwqEgAAAABJRU5ErkJggg==\n" } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "from statsmodels.formula.api import glm\n", "from statsmodels.api import families as f\n", "\n", "# we only have t-values here\n", "logRegRavens = glm('ravenWinNum ~ ravenScore', ravensData, family=f.Binomial()).fit()\n", "logRegRavens.summary()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: ravenWinNum No. Observations: 20
Model: GLM Df Residuals: 18
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0
Method: IRLS Log-Likelihood: -10.447
Date: Wed, 20 Feb 2013 Deviance: 20.895
Time: 20:18:03 Pearson chi2: 17.2
No. Iterations: 6
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1.6800 1.554 -1.081 0.294 -4.726 1.366
ravenScore 0.1066 0.067 1.597 0.128 -0.024 0.237
" ], "output_type": "pyout", "prompt_number": 39, "text": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: ravenWinNum No. Observations: 20\n", "Model: GLM Df Residuals: 18\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0\n", "Method: IRLS Log-Likelihood: -10.447\n", "Date: Wed, 20 Feb 2013 Deviance: 20.895\n", "Time: 20:18:03 Pearson chi2: 17.2\n", "No. Iterations: 6 \n", "==============================================================================\n", " coef std err t P>|t| [95.0% Conf. Int.]\n", "------------------------------------------------------------------------------\n", "Intercept -1.6800 1.554 -1.081 0.294 -4.726 1.366\n", "ravenScore 0.1066 0.067 1.597 0.128 -0.024 0.237\n", "==============================================================================\n", "\"\"\"" ] } ], "prompt_number": 39 }, { "cell_type": "code", "collapsed": false, "input": [ "plot(ravensData['ravenScore'], logRegRavens.fittedvalues, 'ob')\n", "xlabel('Score')\n", "ylabel('Prob Ravens Win');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtQU2f6B/BvJPmBopW1eGvCFJVIoghEwUu9kFYBt1TU\ntR1xp1YpdWjlop3p3XUau6XqtjOtArbq1tV2FO22dnBFIlJNvbXQKtZuZRWp1MhWFCzeuEji+f3h\nmDUFhMBJAjnfzwwzOW9eD8872z0P7/XIBEEQQEREktXD3QEQEZF7MREQEUkcEwERkcQxERARSRwT\nARGRxDEREBFJnOiJ4Nlnn8XAgQMxatSoVuukp6dDrVYjLCwMJSUlYodAREQOED0RJCYmwmg0tvr9\nnj17cPbsWZSVlWHDhg144YUXxA6BiIgcIHoimDx5Mv7whz+0+v2uXbuwYMECAMC4ceNQW1uLqqoq\nscMgIqJ2krv6F1ZWViIgIMB2rVKpcOHCBQwcONCunkwmc3VoREQewdEDI9wyWfz7IFt76AuC4LE/\nb775pttjYPvYNrbPeT+7d3+NmJhliIp6EzExy7B799cu+b0d4fIegVKphNlstl1fuHABSqXS1WEQ\nETlNXt5BLFmyF+XlGbay8vJlAIC4uCnuCqtVLu8RxMfH45NPPgEAfPvtt/Dz82s2LERE1J2tXVtg\nlwQAoLw8A5mZ+9wU0f2J3iOYN28evv76a1RXVyMgIAArVqxAU1MTACA5ORmPP/449uzZg6CgIPj6\n+uIf//iH2CF0C3q93t0hOJUnt8+T2wawfWJobGz50drQ4OX0390RMqGjg0pOJpPJOjzeRUTkTrGx\nf0FBwdstlC+H0fhXp/7ujjw7ubOYiEhk6ekxGDZsmV3ZsGFvIC0t2k0R3R97BERETpCXdxCZmfvQ\n0OAFHx8r0tKiXTJR3JFnJxMBEZEH4dAQERE5jImAiEjimAiIiCTO5TuLiUha8vIOYu3aAjQ2yuHt\nbUF6ekyX3F0rZUwEROQ03e2oBani0BAROU13O2pBqpgIiMhputtRC1LFREBETuPtbWmx3MfH6uJI\n6H6YCIjIabrbUQtSxZ3FRORU7jpqQap4xAQRkcTxiAkiInIYEwERkcQxERARSRwTARGRxPGICSIP\nxnN+qD2YCIg8FM/5ofbi0BCRh+I5P9ReTAREHorn/FB7MREQeSie80Pt5ZREYDQaodFooFarsXr1\n6mbf//bbb5g9ezbCwsIwbtw4/PTTT84Ig0jSeM4PtZfoR0xYrVYEBwejsLAQSqUSkZGRyMnJgVar\ntdV5+eWX8cADD2D58uU4ffo0UlJSUFhYaB8Yj5gg6jSe8yM9HXl2ir5qqLi4GEFBQQgMDAQAJCQk\nIDc31y4RlJaW4rXXXgMABAcHo6KiApcvX0b//v3t7mUwGGyf9Xo99Hq92OESebS4uCl88Hs4k8kE\nk8nUqXuInggqKysREBBgu1apVCgqKrKrExYWhp07d2LSpEkoLi7GL7/8ggsXLtw3ERARUXO//yN5\nxYoVDt9D9DkCmUzWZp3XXnsNtbW10Ol0yMrKgk6ng5cXVzIQEbmD6D0CpVIJs9lsuzabzVCpVHZ1\n+vTpg02bNtmuhwwZgqFDh4odChERtYPoPYKIiAiUlZWhoqICt27dwo4dOxAfH29X5+rVq7h16xYA\nYOPGjYiKikLv3r3FDoWIiNpB9B6BXC5HVlYWYmNjYbVakZSUBK1Wi/Xr1wMAkpOTcerUKSxcuBAy\nmQwhISH4+OOPxQ6DiIjaiW8oI+oCeDgciaVLLB8lIsfwcDhyNx4xQeRmPByO3I09AiIXamkIiIfD\nkbsxERC5SGtDQA88UNVifR4OR67CoSEiF2ltCEgm8+bhcORW7BEQuUhrQ0B9+vTHW289hszM5fcc\nDjedE8XkMkwERC5yv/cD8HA4cicODRG5CN8PQF0VN5QRuRDfD0DO1pFnJxMBEZEH6cizk0NDREQS\nx0RA1EkGwzr4+8+Fn99C+PvPhcGwzt0hETmEQ0NEnWAwrENGxklYLB/ZyuTy57FsWSgMhsVujIyk\ninMERC7m7z8XNTU7WihPwOXL290QEUkd5wiIXMxi6dlieVOTj4sjIeo4JgKiTpDL61ssVygaXBwJ\nUccxERB1QmpqFOTy5+3K5PJkpKRwbwB1H5wjIOokg2EdsrMPoqnJBwpFA1JSpnCimNyGk8VERBLH\nyWIiInIYEwERkcQxERARSZxTEoHRaIRGo4Farcbq1aubfV9dXY3p06cjPDwcISEh2Lx5szPCICKi\ndhB9sthqtSI4OBiFhYVQKpWIjIxETk4OtFqtrY7BYEBjYyNWrlyJ6upqBAcHo6qqCnL5/96Tw8li\nIiLHdYnJ4uLiYgQFBSEwMBAKhQIJCQnIzc21qzN48GBcu3YNAHDt2jU8+OCDdkmAiIhcR/Snb2Vl\nJQICAmzXKpUKRUVFdnUWLVqExx57DA899BCuX7+Ozz77rMV7GQwG22e9Xg+9Xi92uERE3ZrJZILJ\nZOrUPURPBDKZrM0677zzDsLDw2EymVBeXo7o6Gj88MMP6NOnj129exMBERE19/s/klesWOHwPUQf\nGlIqlTCbzbZrs9kMlUplV+fo0aN46qmnAADDhg3DkCFDcPr0abFDIWoT3yVA5IREEBERgbKyMlRU\nVODWrVvYsWMH4uPj7epoNBoUFhYCAKqqqnD69GkMHTpU7FCI7uvuuwRqanbg6tXNqKnZgYyMk0wG\nJDlOOWIiPz8fS5cuhdVqRVJSEl5//XWsX78eAJCcnIzq6mokJibi/PnzuH37Nl5//XX8+c9/tg+M\nq4bIyfguAfJEPGuIyAF+fgtx9ermZuV9+y5EbW3zcqLuoEssHyXqLvguAaI7mAhIsvguAaI7ODRE\nksZ3CZCnccocwaVLl7Bx40ZUVFTAYrHYftGmTZs6Hml7AmMiICJyWEeenW1uKJs5cyamTJmC6Oho\n9OjRw/aLiIjIM7TZIwgPD8eJEydcFY8NewRERI5zyqqhJ554Anl5eR0OioiIurY2ewS9e/dGXV0d\n/u///g8KheLOP5LJbKeHOi0w9giIiBzGDWVERBIn6mRxaWkptFotjh8/3uL3o0ePdiw6IiLqklrt\nESxatAgbN26EXq9vcZXQgQMHnBsYewRERA4TdWjoypUr6NevnyiBdQQTARGR40RNBAMGDMCDDz6I\nSZMm4ZFHHsHEiRMxfPhwUQJtV2BMBEREDhN9svj06dM4evQojh49im+++QaXLl3ChAkT8Mgjj+DV\nV1/tdMD3DYyJgIjIYU5dNVReXo68vDysWbMGlZWVaGhw7gmNTATUlry8g1i7tgCNjXJ4e1uQnh6D\nuDgeGEfSJuqqoSNHjth6AmazGUOHDsX48eOxdetW6HS6TgdL1Bl5eQexZMlelJdn2MrKy5cBAJMB\nkYNa7RH06NEDOp0OL774ImbPng1fX1/XBsYeAd1HbOxfUFDwdgvly2E0/tUNERF1DaL2CCorK209\ngg0bNqCpqQljxozBhAkTMGHCBL5jmNyqsbHl/3QbGrxcHAlR99dqIhg8eDDmzJmDOXPmAADq6uqw\nadMmvPnmmzh37hysVqvLgiT6PW9vS4vlPj7875LIUa0mgqtXr9pWDB09ehQlJSVQq9WYMWMGJk6c\n6MoYiZpJT49BefkyuzmCYcPeQFradDdGRdQ9tTpH0L9/f4wfP962hyAiIgK9evVyXWCcI6A25OUd\nRGbmPjQ0eMHHx4q0tGhOFJPkibp8VBAEt76AhomA7sWlokTtI+pkMd9CRl0Fl4oSOVebL6bpCKPR\nCI1GA7VajdWrVzf7/r333oNOp4NOp8OoUaMgl8tRW1vrjFDIA6xdW2CXBACgvDwDmZn73BQRkWcR\nPRFYrVakpqbCaDTi1KlTyMnJQWlpqV2dl156CSUlJSgpKcHKlSuh1+vh5+cndijkIbhUlMi52kwE\nL7/8Mq5du4ampiZMnToV/v7++PTTT1utX1xcjKCgIAQGBkKhUCAhIQG5ubmt1t+2bRvmzZvXsehJ\nErhUlMi5Wp0juKugoADvvvsuvvzySwQGBmLnzp2YPHky5s+f32L9yspKBAQE2K5VKhWKioparFtX\nV4e9e/di3bp1LX5vMBhsn/V6PfR6fVvhkgfiUlGi1plMJphMpk7do81EYLHc+Wts9+7dePLJJ9G3\nb9/7TiQ7Msn8r3/9C5MmTWp1WOjeREDSdXdCODNz+T1LRadzopgIzf9IXrFihcP3aDMRzJgxAxqN\nBj4+Pvjwww9x6dIl+Pj4tFpfqVTCbDbbrs1mM1QqVYt1t2/fzmEhsmMwrENW1tewWHpCLq9HamoU\nDIbFiIubwgc/kZO06xjqmpoa+Pn5wcvLCzdv3sT169cxaNCgFutaLBYEBwfjq6++wkMPPYSxY8ci\nJycHWq3Wrt7Vq1cxdOhQXLhwAT179mweGPcRSI7BsA4ZGSdhsXxkK5PLn8eyZaEwGBa7MTKi7sNp\n7yM4cuQIfvnlFzQ1Ndl+0TPPPNNq/fz8fCxduhRWqxVJSUl4/fXXsX79egBAcnIyAGDLli3Yu3cv\ntm3bJlpjqHvz95+LmpodLZQn4PLl7W6IiKj7cUoiePrpp/Hzzz8jPDwcXl7/W66XmZnZsSjbGxgT\ngeT4+S3E1aubm5X37bsQtbXNy4moOVF3Ft917NgxnDp1ijuNyenk8voWyxUK574Nj0jq2txHEBIS\ngl9//dUVsZDEpaZGQS5/3q5MLk9GSgoniYmcqc0eweXLlzFixAiMHTsW3t7eAO50PXbt2uX04Eha\n7kwIr0N2dgKamnygUDQgJWUKJ4qJnKzNOYK7GxXuHXeSyWSIiopybmCcIyAicpjTVg1VVFTg7Nmz\nmDZtGurq6mCxWPDAAw90ONB2BcZEQETksI48O9ucI9iwYQOeeuop27LPCxcuYPbs2R2LkIiIupw2\nE0F2djYOHz5s6wEMHz4cly5dcnpgRETkGm0mAm9vb9skMXBn5zCXkhIReY42E0FUVBQyMjJQV1eH\nffv24amnnsKMGTNcERsREblAm5PFt2/fxt///ncUFBQAAGJjY/Hcc885vVfAyWIiIsc5ZdXQzp07\nERcXZzc85ApMBEREjnPKqqFdu3ZBrVZj/vz52L17t+39BERE5BnatY/g1q1byM/Px2effYZDhw4h\nOjoaH3/8sXMDY4+AiMhhTttQBtxJBnv37sWmTZtw8OBB1NTUdCjIdgfGREBE5DCnDA3t2bMHCxcu\nhFqtxueff45Fixahqqqqw0ESEVHX0maPYN68eZg7dy6mT59+31dUio09AiIixzl1aMjVmAiIiBzn\nlKGhb775BpGRkfD19YVCoUCPHj2cfuAcERG5TpuJIDU1Fdu2bcPw4cPR0NCAjz/+GIsX83x4IiJP\n0WYiAAC1Wg2r1QovLy8kJibCaDQ6Oy4iInKRNt9Q5uvri8bGRoSFheGVV17BoEGDOHZPrcrLO4i1\nawvQ2CiHt7cF6ekxiIvjqyaJurI2E8Enn3yC27dvIysrC++//z4uXLiAL774whWxUTeTl3cQS5bs\nRXl5hq2svHwZADAZEHVhDq8aunHjBrKzs/Hqq686KyYAXDXUHcXG/gUFBW+3UL4cRuNf3RARkfSI\numrov//9L9LS0vD444/jlVdewY0bN/D+++9Do9GgsrLyvjc1Go3QaDRQq9VYvXp1i3VMJhN0Oh1C\nQkKg1+sdCpq6psbGljuYDQ1eLo6EiBzR6tDQM888g0mTJiEuLg5GoxEhISEYP348vv/+ewwaNKjV\nG1qtVqSmpqKwsBBKpRKRkZGIj4+HVqu11amtrUVKSgr27t0LlUqF6upqcVtFbuHt3fKBhD4+VhdH\nQkSOaLVHUF1dDYPBgOnTp+ODDz6AxWLB1q1b75sEAKC4uBhBQUEIDAyEQqFAQkICcnNz7eps27YN\nc+bMgUqlAgD4+/uL0BRyt/T0GAwbtsyubNiwN5CWFu2miIioPVrtEdy+fRtXrlwBAAiCgH79+uHq\n1au27/v169fiv6usrERAQIDtWqVSoaioyK5OWVkZmpqa8Oijj+L69etYsmQJ5s+f3+xeBoPB9lmv\n13MIqYu7OyGcmbkcDQ1e8PGxIi1tOieKiZzIZDLBZDJ16h6tJoJr165hzJgxdmV3r2UyGX7++ecW\n/1173lzW1NSE48eP46uvvkJdXR0mTJiA8ePHQ61W29W7NxFQ9xAXN4UPfiIX+v0fyStWrHD4Hq0m\ngoqKio7EBKVSCbPZbLs2m822IaC7AgIC4O/vj549e6Jnz56YMmUKfvjhh2aJgIiInK9dO4sdERER\ngbKyMlRUVODWrVvYsWMH4uPj7erMnDkThw8fhtVqRV1dHYqKijBixAixQyEionZoc0OZwzeUy5GV\nlYXY2FhYrVYkJSVBq9Vi/fr1AIDk5GRoNBpMnz4doaGh6NGjBxYtWsREQETkJjyGmojIg3Tk2dmu\nHsGxY8dw+PBh9OjRAxMnTsTo0aM7FCAREXU9bc4RvPXWW1i4cCGuXLmCy5cvIzExEX/9K48LICLy\nFG0ODQ0fPhwnT560vaayvr4eYWFhOHPmjHMD49AQEZHDnPKGMqVSifr6ett1Q0NDs+WgRETUfbU6\nR5CWlgYA6Nu3L0aOHImYmBgAwL59+zB27FjXREdERE7X6tDQ5s2bbbuEBUFo9nnBggXODYxDQ0RE\nDuvIs7Ndy0cbGxttcwIajQYKhaJjEToSGBMBEZHDnLJ81GQyYcGCBXj44YcBAOfPn8eWLVsQFRXV\nsSiJiKhLabNHMHr0aOTk5CA4OBgAcObMGSQkJOD48ePODYw9AiIihzll1ZDFYrElAeDOclKLpeUX\nkBARUffT5tDQmDFj8Nxzz+Hpp5+GIAjYunUrIiIiXBEbERG5QJtDQ42NjcjKysKRI0cAAJMnT8bi\nxYvh7e3t3MA4NERE5DDRVw1ZLBaEhITgP//5T6eDcxQTARGR40SfI5DL5QgODsYvv/zSqcCoezAY\n1sHffy78/BbC338uDIZ17g6JiFygzTmCK1euYOTIkRg7dix8fX0B3Mk4u3btcnpw5DoGwzpkZJyE\nxbLDVpaR8TyAdTAYFrsvMCJyujbnCL7++msAsOtqyGQyp+8j4NCQa/n7z0VNzY4WyhNw+fJ2N0RE\nRB0h6oay+vp6fPTRRzh79ixCQ0Px7LPPumRHMbmHxdKzxfKmJh8XR0JErtbqHMGCBQtw7NgxhIaG\nYs+ePXjppZdcGRe5mFxe32K5QtHg4kiIyNVa7RGUlpbixx9/BAAkJSUhMjLSZUGR66WmRiEj43lY\nLB/ZyuTyZKSkTHFjVETkCq0mArlc3uJn8kx3JoTXITs7AU1NPlAoGpCSMoUTxUQS0OpksZeXF3r1\n6mW7rq+vR8+ed8aRZTIZrl275tzAOFlMROQwUSeLrVZrpwOirikv7yDWri1AY6Mc3t4WpKfHIC6O\nQ0BEUsUxH4nJyzuIJUv2orw8w1ZWXr4MAJgMiCSqzdNHO8JoNEKj0UCtVmP16tXNvjeZTOjbty90\nOh10Oh3efvttZ4RBLVi7tsAuCQBAeXkGMjP3uSkiInI30XsEVqsVqampKCwshFKpRGRkJOLj46HV\nau3qRUVFcXeyGzQ2tvw/eUODl4sjIaKuQvQeQXFxMYKCghAYGAiFQoGEhATk5uY2q8eJYPfw9m75\nXRI+PpwTIpIq0XsElZWVCAgIsF2rVCoUFRXZ1ZHJZDh69CjCwsKgVCrx3nvvYcSIEc3uZTAYbJ/1\nej30er3Y4UpOenoMysuX2Q0PDRv2BtLSprsxKiLqKJPJBJPJ1Kl7iJ4IZDJZm3VGjx4Ns9mMXr16\nIT8/H7NmzcKZM2ea1bs3EZA47k4IZ2YuR0ODF3x8rEhLm86JYqJu6vd/JK9YscLhe4ieCJRKJcxm\ns+3abDZDpVLZ1enTp4/t8x//+EcsXrwYV65cQb9+/cQOh1oQFzeFD34ishF9jiAiIgJlZWWoqKjA\nrVu3sGPHDsTHx9vVqaqqss0RFBcXQxAEJgEiIjcRvUcgl8uRlZWF2NhYWK1WJCUlQavVYv369QCA\n5ORkfP755/jwww8hl8vRq1cvbN/OY46JiNylzfcRuAuPmCAicpzor6okIiLPx0RARCRxTARERBLH\nREBEJHFMBEREEsdEQEQkcUwEREQSx0RARCRxTARERBLHREBEJHFMBEREEsdEQEQkcUwEREQSx0RA\nRCRxTATdjMGwDv7+c+HntxD+/nNhMKxzd0hE1M3xfQTdiMGwDhkZJ2GxfGQrk8ufx7JloTAYFrsx\nMiLqKjry7GQi6Eb8/eeipmZHC+UJuHyZb3kjIr6YxuNZLD1bLG9q8nFxJETkSZgIuhG5vL7FcoWi\nwcWREJEnYSLoRlJToyCXP29XJpcnIyVlipsiIiJPwDmCbsZgWIfs7INoavKBQtGAlJQpnCgmIhtO\nFhMRSRwni4mIyGFOSQRGoxEajQZqtRqrV69utd53330HuVyOnTt3OiMMIiJqB9ETgdVqRWpqKoxG\nI06dOoWcnByUlpa2WO/VV1/F9OnTOQRERORGoieC4uJiBAUFITAwEAqFAgkJCcjNzW1WLzMzE08+\n+ST69+8vdghEROQAudg3rKysREBAgO1apVKhqKioWZ3c3Fzs378f3333HWQyWYv3MhgMts96vR56\nvV7scImIujWTyQSTydSpe4ieCFp7qN9r6dKlWLVqlW12u7WhoXsTARERNff7P5JXrFjh8D1ETwRK\npRJms9l2bTaboVKp7OocO3YMCQkJAIDq6mrk5+dDoVAgPj5e7HCIiKgNou8jsFgsCA4OxldffYWH\nHnoIY8eORU5ODrRabYv1ExMTMWPGDPzpT3+yD4z7CIiIHNaRZ6foPQK5XI6srCzExsbCarUiKSkJ\nWq0W69evBwAkJyeL/SuJiKgTuLOYiMiDcGcxERE5jImAiEjimAiIiCSOiYCISOKYCIiIJI6JgIhI\n4pgIiIgkjomAiEjimAiIiCSOiYCISOKYCIiIJI6JgIhI4pgIiIgkjomAiEjiRH8fAd2Rl3cQa9cW\noLFRDm9vC9LTYxAXN8XdYRERNcNE4AR5eQexZMlelJdn2MrKy5cBAJMBEXU5HBpygrVrC+ySAACU\nl2cgM3OfmyIiImodE4ETNDa23NFqaPBycSRERG1jInACb29Li+U+PlYXR0JE1DYmAidIT4/BsGHL\n7MqGDXsDaWnRboqIiKh1fHm9k+TlHURm5j40NHjBx8eKtLRoThQTkdN15NnJREBE5EE68uzk0JCb\nmEwmd4fgVJ7cPk9uG8D2SZFTEoHRaIRGo4Farcbq1aubfZ+bm4uwsDDodDqMGTMG+/fvd0YYXZqn\n/8foye3z5LYBbJ8Uib6hzGq1IjU1FYWFhVAqlYiMjER8fDy0Wq2tzrRp0zBz5kwAwI8//ojZs2fj\n7NmzYodCRETtIHqPoLi4GEFBQQgMDIRCoUBCQgJyc3Pt6vj6+to+37hxA/7+/mKHQURE7SWI7J//\n/Kfw3HPP2a4//fRTITU1tVm9L7/8UtBoNELfvn2FoqKiZt8D4A9/+MMf/nTgx1GiDw3JZLJ21Zs1\naxZmzZqFQ4cOYf78+Th9+rTd9wJXDBERuYToQ0NKpRJms9l2bTaboVKpWq0/efJkWCwW1NTUiB0K\nERG1g+iJICIiAmVlZaioqMCtW7ewY8cOxMfH29UpLy+3/cV//PhxAMCDDz4odihERNQOog8NyeVy\nZGVlITY2FlarFUlJSdBqtVi/fj0AIDk5GV988QU++eQTKBQK9O7dG9u3bxc7DCIiai+HZxVcID8/\nXwgODhaCgoKEVatWuTucTktMTBQGDBgghISE2MpqamqEadOmCWq1WoiOjhZ+++03N0bYcefPnxf0\ner0wYsQIYeTIkcKaNWsEQfCc9tXX1wtjx44VwsLCBK1WK7z22muCIHhO++6yWCxCeHi48MQTTwiC\n4Fnte/jhh4VRo0YJ4eHhQmRkpCAIntW+3377TZgzZ46g0WgErVYrfPvttw63r8vtLL67D8FoNOLU\nqVPIyclBaWmpu8PqlMTERBiNRruyVatWITo6GmfOnMHUqVOxatUqN0XXOQqFAu+//z5++uknfPvt\nt8jOzkZpaanHtM/HxwcHDhzAiRMncPLkSRw4cACHDx/2mPbdtWbNGowYMcK22MOT2ieTyWAymVBS\nUoLi4mIAntW+JUuW4PHHH0dpaSlOnjwJjUbjePtclLTa7ejRo0JsbKzteuXKlcLKlSvdGJE4zp07\nZ9cjCA4OFi5evCgIgiD8+uuvQnBwsLtCE9XMmTOFffv2eWT7bt68KURERAj//ve/Pap9ZrNZmDp1\nqrB//35bj8CT2hcYGChUV1fblXlK+2pra4UhQ4Y0K3e0fV2uR1BZWYmAgADbtUqlQmVlpRsjco6q\nqioMHDgQADBw4EBUVVW5OaLOq6ioQElJCcaNG+dR7bt9+zbCw8MxcOBAPProoxg5cqRHte/FF1/E\nu+++ix49/vc48KT2yWQyTJs2DREREdi4cSMAz2nfuXPn0L9/fyQmJmL06NFYtGgRbt686XD7ulwi\naO8+BE8ik8m6fbtv3LiBOXPmYM2aNejTp4/dd929fT169MCJEydw4cIFHDx4EAcOHLD7vju3b/fu\n3RgwYAB0Ol2re3e6c/sA4MiRIygpKUF+fj6ys7Nx6NAhu++7c/ssFguOHz+OxYsX4/jx4/D19W02\nDNSe9nW5RODoPoTuauDAgbh48SIA4Ndff8WAAQPcHFHHNTU1Yc6cOZg/fz5mzZoFwLPad1ffvn0R\nFxeHY8eOeUz7jh49il27dmHIkCGYN28e9u/fj/nz53tM+wBg8ODBAID+/ftj9uzZKC4u9pj2qVQq\nqFQqREZGAgCefPJJHD9+HIMGDXKofV0uEbRnH4IniI+Px5YtWwAAW7ZssT1AuxtBEJCUlIQRI0Zg\n6dKltnJPaV91dTVqa2sBAPX19di3bx90Op3HtO+dd96B2WzGuXPnsH37djz22GP49NNPPaZ9dXV1\nuH79OgDatYDiAAADS0lEQVTg5s2bKCgowKhRozymfYMGDUJAQADOnDkDACgsLMTIkSMxY8YMx9rn\nhPmLTtuzZ48wfPhwYdiwYcI777zj7nA6LSEhQRg8eLCgUCgElUolbNq0SaipqRGmTp3a7ZevHTp0\nSJDJZEJYWJgQHh4uhIeHC/n5+R7TvpMnTwo6nU4ICwsTRo0aJfztb38TBEHwmPbdy2QyCTNmzBAE\nwXPa9/PPPwthYWFCWFiYMHLkSNvzxFPaJwiCcOLECSEiIkIIDQ0VZs+eLdTW1jrcvi77hjIiInKN\nLjc0RERErsVEQEQkcUwEREQSx0RARCRxTAREADIyMhASEoKwsDDodDrbmTREUiD6MdRE3c0333yD\nvLw8lJSUQKFQ4MqVK2hsbOzw/SwWC+Ry/l+Lug/2CEjyLl68CH9/fygUCgBAv379MHjwYHz33XeY\nOHEiwsPDMW7cONy8eRMNDQ1ITExEaGgoRo8eDZPJBADYvHkz4uPjMXXqVERHR6Ourg7PPvssxo0b\nh9GjR2PXrl1ubCHR/fHPFpK8mJgYvPXWWwgODsa0adMwd+5cjB8/HgkJCfjss88wZswY3LhxAz4+\nPvjggw/g5eWFkydP4vTp04iJibHt6iwpKcGPP/4IPz8/vPHGG5g6dSo2bdqE2tpajBs3DtOmTUOv\nXr3c3Fqi5tgjIMnz9fXFsWPHsGHDBvTv3x9z587Fhg0bMHjwYIwZMwYA0Lt3b3h5eeHIkSN4+umn\nAQDBwcF4+OGHcebMGchkMkRHR8PPzw8AUFBQgFWrVkGn0+HRRx9FY2Oj3RlaRF0JewREuHPCaFRU\nFKKiojBq1ChkZ2e3Wre1zfi+vr521zt37oRarRY1TiJnYI+AJO/MmTMoKyuzXZeUlECr1eLixYv4\n/vvvAQDXr1+H1WrF5MmTsXXrVtu/O3/+PDQaTbPkEBsbi7Vr19rdk6irYo+AJO/GjRtIS0tDbW0t\n5HI51Go1NmzYgMTERKSlpaG+vh69evVCYWEhFi9ejBdeeAGhoaGQy+XYsmULFApFszPfly9fjqVL\nlyI0NBS3b9/G0KFDOWFMXRYPnSMikjgODRERSRwTARGRxDEREBFJHBMBEZHEMREQEUkcEwERkcT9\nP0oVyOZ8bZ4lAAAAAElFTkSuQmCC\n" } ], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "np.exp(logRegRavens.params)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "pyout", "prompt_number": 41, "text": [ "Intercept 0.186372\n", "ravenScore 1.112469" ] } ], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "# not the same as R\n", "np.exp(logRegRavens.conf_int())" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
01
Intercept 0.008862 3.91965
ravenScore 0.976070 1.26793
\n", "
" ], "output_type": "pyout", "prompt_number": 43, "text": [ " 0 1\n", "Intercept 0.008862 3.91965\n", "ravenScore 0.976070 1.26793" ] } ], "prompt_number": 43 }, { "cell_type": "code", "collapsed": false, "input": [ "# no anova for logistic regression" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 44 }, { "cell_type": "code", "collapsed": false, "input": [ "%%R\n", "load(\"../data/ravensData.rda\")\n", "logRegRavens <- glm(ravensData$ravenWinNum ~ ravensData$ravenScore, family=\"binomial\")\n", "print(anova(logRegRavens,test=\"Chisq\"))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "display_data", "text": [ "Analysis of Deviance Table\n", "\n", "Model: binomial, link: logit\n", "\n", "Response: ravensData$ravenWinNum\n", "\n", "Terms added sequentially (first to last)\n", "\n", "\n", " Df Deviance Resid. Df Resid. Dev Pr(>Chi) \n", "NULL 19 24.435 \n", "ravensData$ravenScore 1 3.5398 18 20.895 0.05991 .\n", "---\n", "Signif. codes: 0 \u2018***\u2019 0.001 \u2018**\u2019 0.01 \u2018*\u2019 0.05 \u2018.\u2019 0.1 \u2018 \u2019 1 \n" ] } ], "prompt_number": 50 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }